

1. La normal a la curva $y = \frac{k}{x} + \ln x^2$, para $x \neq 0$, $k \in \mathbb{R}$, en el punto en que x = 2, tiene la ecuación 3x + 2y = b, donde $b \in \mathbb{R}$. halle **exactamente** el valor de k.

(Total 6 marks)

- 3. En un experimento, el número de bacterias "*n*" en un líquido, está dado por la fórmula $n = 650 e^{kt}$, donde *t*, el tiempo, está en minutos y *k* es una constante. El número de bacterias se duplica cada veinte minutos. Halle,
 - (a) **exactamente** *k*;

4.

(b) la razón a la que el número de bacterias se incrementa cuando t = 90.

x	1	2	3	4
f(x)	5	4	-1	3
g(x)	1	-2	2	-5
f'(x)	5	6	0	7
g'(x)	-6	-4	-3	4

(a) $\frac{d}{dx}(f(x) + g(x))$, cuando x = 4;

(b)
$$\int_{1}^{3} (g'(x) + 6) dx$$
.

5. La ecuación de una curva puede escribise en la forma, y = a(x - p)(x - q). intersecta al eje x en A(-2, 0) y B(4, 0). La curva y = f(x) se muestra abajo.

- (a) (i) Escriba el valor de p y de q.
 - (ii) El punto (6, 8) está en la curva, halle el valor de *a*.
 - (iii) Escriba la ecuación de la curva en la forma $y = ax^2 + bx + c$.

(5)

- (b) (i) Halle $\frac{dy}{dx}$.
 - (ii) Se dibuja una tangente en el punto P. El gradiente de esta tangente es 7. halle las coordenadas de P.

(4)

4

- (c) La línea *L* pasa a través de B(4, 0), y es perpendicular a la tangente de la curva en el punto B.
 - (i) Halle la ecuación de *L*.
 - (ii) Halle la coordenada x (abscisa) del punto en el que L intersecta a la curva otra vez..

(6) (Total 15 marks)

- 6. Sea $f(x) = (3x + 4)^5$.Hallar
 - (a) f'(x);
 - (b) $\int f(x) dx$.

Working:	8
	Answers:
	(a) (b)
YN C	(Total 6 mark

5

7. Use the substitution
$$u = x + 2$$
 to find $\int \frac{x^3}{(x+2)^2} dx$.
(Total 6 marks)
8. Consider the differential equation $\frac{dy}{d\theta} = \frac{y}{e^{2\theta} + 1}$.
(a) Use the substitution $x = e^{\theta}$ to show that
 $\int \frac{dy}{y} = \int \frac{dx}{x(x^2 + 1)}$.
(b) Find $\int \frac{dx}{x(x^2 + 1)}$.
(c) Hence find y in terms of θ , if $y = \sqrt{2}$ when $\theta = 0$.

(4)

(Total 11 marks)

9. Find the total area of the two regions enclosed by the curve $y = x^3 - 3x^2 - 9x + 27$ and the line y = x + 3.

- (i) *a*;
- (ii) *b*.

(2)

The regions between the curve and the *x*-axis are shaded for $a \le x \le 2$ as shown.

7

(5)

- (b) (i) Write down an expression which represents the **total** area of the shaded regions.
 - (ii) Calculate this total area.
- (c) (i) The y-coordinate of R is -0.240. Find the y-coordinate of S.
 - (ii) Hence or otherwise, find the range of values of k for which the equation $(x 2)\sin(x 1) = k$ has **four** distinct solutions.

(4) (Total 11 marks)

11. The diagram shows part of the graph of $y = e^{\frac{1}{2}}$

(a) Find the coordinates of the point *P*, where the graph meets the *y*-axis.

The shaded region between the graph and the *x*-axis, bounded by x = 0 and $x = \ln 2$, is rotated through 360° about the *x*-axis.

- (b) Write down an integral which represents the volume of the solid obtained.
- (c) Show that this volume is π .

(5) (Total 11 marks)

(2)

(4)

12. The diagram below shows part of the graph of $f(x) = x^2 \sin(x^2 + \pi)$ and the shaded region A.

This graph crosses the *x*-axis at P and Q. The point P has coordinates $(\sqrt[3]{\pi}, 0)$.

- (a) Find the *x*-coordinate of Q.
- (b) Use the substitution $u = x^3 + \pi$ to find $\int f(x) dx$.
- (c) Hence, using your answer to (b), find the area of the region A.

(3) (Total 9 marks)

(2)

(4)

- **13.** (a) Find $\int (1+3\sin(x+2)) dx$.
 - (b) The diagram shows part of the graph of the function $f(x) = 1 + 3 \sin(x + 2)$. The area of the shaded region is given by $\int_0^a f(x) dx$.

14. Calculate the area enclosed by the curves $y = \ln x$ and $y = e^x - e$, x > 0.

16. Consider the function $f(x) = \cos x + \sin x$.

(a) (i) Show that
$$f(-\frac{\pi}{4}) = 0$$
.

(ii) Find in terms of π , the smallest **positive** value of x which satisfies f(x) = 0.

(3)

11

17. Given that $\int_{1}^{3} g(x) dx = 10$, deduce the value of

(a)
$$\int_{1}^{3} \frac{1}{2} g(x) dx;$$

(b)
$$\int_{1}^{3} (g(x) + 4) dx.$$

18. The diagram below shows the shaded region R enclosed by the graph of $y = 2x\sqrt{1+x^2}$, the x-axis, and the vertical line x = k.

(a) Find
$$\frac{dy}{dx}$$
.

12

$$\int 2x\sqrt{1+x^2} \, \mathrm{d}x = \frac{2}{3}(1+x^2)^{\frac{3}{2}} + c.$$

(c) Given that the area of *R* equals 1, find the value of *k*.

- (3) (Total 9 marks)
- 19. In this question, *s* represents displacement in metres, and *t* represents time in seconds.

(a) The velocity $v \text{ ms}^{-1}$ of a moving body may be written as $v = \frac{ds}{dt} = 30 - at$, where *a* is a constant. Given that s = 0 when t = 0, find an expression for *s* in terms of *a* and *t*.

(5)

(5)

Trains approaching a station start to slow down when they pass a signal which is 200 m from the station.

- (b) The velocity of Train 1 t seconds after passing the signal is given by v = 30 5t.
 - (i) Write down its velocity as it passes the signal.
 - (ii) Show that it will stop before reaching the station.
- (c) Train 2 slows down so that it stops at the station. Its velocity is given by $v = \frac{ds}{dt} = 30 at$, where *a* is a constant.
 - (i) Find, in terms of *a*, the time taken to stop.
 - (ii) Use your solutions to parts (a) and (c)(i) to find the value of a.

(5) (Total 15 marks)

(3)

20. The diagram below shows a sketch of the graph of the function $y = sin(e^x)$ where $-1 \le x \le 2$, and x is in **radians**. The graph cuts the y-axis at A, and the x-axis at C and D. It has a maximum point at B.

21. The diagram below shows the graph of $y_1 = f(x)$, 0 "x "4.

15

Given that $\sin \frac{3\pi}{4} = \frac{\sqrt{2}}{2}$ and $\cos \frac{3\pi}{4} = -\frac{\sqrt{2}}{2}$, calculate the **exact** area of the shaded region.

- 24. Consider the function $f(x) = \frac{1}{x^x}$, where $x \in \mathbb{R}^+$.
 - (a) Show that the derivative $f'(x) = f(x) \left(\frac{1 \ln x}{x^2} \right)$.
 - (b) Sketch the function f(x), showing clearly the local maximum of the function and its horizontal asymptote. You may use the fact that
 - $\lim_{x\to\infty}\frac{\ln x}{x}=0.$
 - (c) Find the Taylor expansion of f(x) about x = e, up to the second degree term, and show that this polynomial has the same maximum value as f(x) itself.

(5) (Total 13 marks)

25. Let $y = \sin(kx) - kx \cos(kx)$, where k is a constant.

Show that $\frac{dy}{dx} = k^2 x \sin(kx)$.

(Total 3 marks)

26. Find the area enclosed by the curves $y = \frac{2}{1+x^2}$ and $y = e^3$, given that $-3 \le x \le 3$.

Working:	
3.	
YNO.	002
	Answers:

(Total 3 marks)

(3)

(5)

27. The diagram below shows part of the graph of the function

$$f: x \mapsto -x^3 + 2x^2 + 15x.$$

The graph intercepts the *x*-axis at A(-3,0), B(5,0) and the origin, O. There is a minimum point at P and a maximum point at Q.

- (a) The function may also be written in the form $f: x \mapsto -x(x-a)(x-b)$, where a < b. Write down the value of
 - (i) *a*;
 - (ii) *b*.

(b) Find

- (i) f'(x);
- (ii) the **exact** values of x at which f'(x) = 0;
- (iii) the value of the function at Q.

(c) (i) Find the equation of the tangent to the graph of f at O.

(ii) This tangent cuts the graph of f at another point. Give the x-coordinate of this point.

(4)

(7)

(2)

(d) Determine the area of the shaded region.

(2) (Total 15 marks)

28. Let
$$f(t) = t^{\frac{1}{3}} \left(1 - \frac{1}{2t^{\frac{5}{3}}} \right)$$
. Find $\int f(t) dt$.

30. The function f is given by $f(x) = \frac{\ln 2x}{x}, \quad x > 0.$

(a) (i) Show that
$$f'(x) = \frac{1 - \ln 2x}{x^2}$$
.

Hence

- (ii) prove that the graph of f can have only one local maximum or minimum point;
- (iii) find the coordinates of the maximum point on the graph of f.

(b) By showing that the second derivative $f''(x) = \frac{2 \ln 2x - 3}{x^3}$ or otherwise, find the coordinates of the point of inflexion on the graph of *f*.

(c) The region S is enclosed by the graph of f, the x-axis, and the vertical line through the maximum point of f, as shown in the diagram below.

$$y = f(x)$$

(i) Would the trapezium rule overestimate or underestimate the area of *S*? Justify your answer by drawing a diagram or otherwise.

- (ii) Find $\int f(x) dx$, by using the substitution $u = \ln 2x$, or otherwise.
- (iii) Using $\int f(x) dx$, find the area of S.

(d) The Newton-Raphson method is to be used to solve the equation f(x) = 0.

(i) Show that it is not possible to find a solution using a starting value of $x_1 = 1$.

(3)

(3)

(4)

(4)

(ii) Starting with $x_1 = 0.4$, calculate successive approximations $x_2, x_3, ...$ for the root of the equation until the absolute error is less than 0.01. Give all answers correct to **five** decimal places.

(4) (Total 30 marks)

(6)

(6)

SCHWEIZERSCHULE ÉCOLE SUISSE SWISS SCHOOL COLEGIO SUIZO

31. In this part of the question, radians are used throughout.

The function f is given by

 $f(x) = (\sin x)^2 \cos x.$

The following diagram shows part of the graph of y = f(x).

- (e) (i) Find $\int f(x) dx$.
 - (ii) Find the area of the shaded region in the diagram.
- (f) Given that $f''(x) = 9(\cos x)^3 7\cos x$, find the *x*-coordinate at the point C.

(4) (Total 20 marks)

32. The diagram shows a sketch of the graph of y = f'(x) for $a \le x \le b$.

(4)

On the grid below, which has the same scale on the *x*-axis, draw a sketch of the graph of y = f(x) for $a \le x \le b$, given that f(0) = 0 and $f(x) \ge 0$ for all *x*. On your graph you should clearly indicate any minimum or maximum points, or points of inflexion.

Without finding the value of *p*, show that

$$\frac{p}{2}$$
 < area of region $A < p$.

- (c) Find the value of *p* correct to four decimal places.
- (d) Express the area of region A as a definite integral and calculate its value.

(3) (Total 12 marks)

(4)

(2)

SCHWEIZERSCHULE ÉCOLE SUISSE SWISS SCHOOL COLEGIO SUIZO

34. The area of the enclosed region shown in the diagram is defined by

 $y \ge x^2 + 2, y \le ax + 2$, where a > 0.

This region is rotated 360° about the *x*-axis to form a solid of revolution. Find, in terms of *a*, the volume of this solid of revolution.

Working:		121
		E
		O D
	Answers:	
21		(Total 4 mar

35. A rock-climber slips off a rock-face and falls vertically. At first he falls freely, but after 2 seconds a safety rope slows him down. The height *h* metres of the rock-climber after *t* seconds of the fall is given by:

$$H = 50 - 5t^{2}, \qquad 0 \le t \le 2$$
$$H = 90 - 40t + 5t^{2}, \qquad 2 \le t \le 5$$

(a) Find the height of the rock-climber when t = 2.

- (b) Sketch a graph of *h* against *t* for $0 \le t \le 5$.
- (c) Find $\frac{dh}{dt}$ for:
 - (i) $0 \le t \le 2$

(1)

(4)

(ii) $2 \le t \le 5$

(2)

28

Find the velocity of the rock-climber when t = 2. (d) (2) Find the times when the velocity of the rock-climber is zero. (e) (3) Find the minimum height of the rock-climber for $0 \le t \le 5$. (f) (3) (Total 15 marks) Given that $f(x) = (2x + 5)^3$ find 36. (a) f'(x); $\int f(x) \mathrm{d}x.$ (b) Working: Answers: (a) (b) (Total 4 marks)

37. A curve with equation y = f(x) passes through the point (1, 1). Its gradient function is f'(x) = 2x + 3.

Find the equation of the curve.

(Total 4 marks)

38. The main runway at *Concordville* airport is 2 km long. An aeroplane, landing at *Concordville*, touches down at point T, and immediately starts to slow down. The point A is at the southern end of the runway. A marker is located at point P on the runway.

39.

31

(iii) how many seconds after touchdown it passes the marker.	
(iii) now many seconds after touchdown it passes the marker,	(2)
(iv) the distance from P to A.	(3)
(b) Show that if the aeroplane touches down before reaching the point P, it can stop before reaching the northern end, B, of the runway.	(5)
(Total 15 ma	(S) rks)
Let $f(x) = \ln x^5 - 3x^2 $, $-0.5 \le x \le 2$, $x \ne a$, $x \ne b$; (<i>a</i> , <i>b</i> are values of <i>x</i> for which $f(x)$ is not defined).	
(a) (i) Sketch the graph of $f(x)$, indicating on your sketch the number of zeros of $f(x)$. Show also the position of any asymptotes.	(2)
(ii) Find all the zeros of $f(x)$, (that is, solve $f(x) = 0$).	(3)
(b) Find the exact values of <i>a</i> and <i>b</i> .	(3)
(c) Find $f(x)$, and indicate clearly where $f(x)$ is not defined.	(3)
(d) Find the exact value of the <i>x</i> -coordinate of the local maximum of $f(x)$, for $0 < x < 1.5$. (You may assume that there is no point of inflexion.)	(3)
(e) Write down the definite integral that represents the area of the region enclosed by $f(x)$ and the <i>x</i> -axis. (Do not evaluate the integral.) (Total 16 ma	(2) rks)

40. The diagram shows the graph of y = f'(x).

- **41.** Let $f(x) = x^3$.
 - (a) Evaluate $\frac{f(5+h) f(5)}{h}$ for h = 0.1.
 - (b) What number does $\frac{f(5+h) f(5)}{h}$ approach as *h* approaches zero?

43. The diagram shows part of the graph of $y = \frac{1}{x}$. The area of the shaded region is 2 units.

(b) Show that $\frac{d}{dx} (x \ln x - x) = \ln x$.

(2)

(c) The diagram shows the region enclosed by the curve $y = \ln x$, the tangent line in part (a), and the line y = 0.

Working:	
15	
1 20	
	Car a bar
	Answers:

(Total 4 marks)

46. In the diagram, *PTQ* is an arc of the parabola $y = a^2 - x^2$, where *a* is a positive constant, and *PQRS* is a rectangle. The area of the rectangle *PQRS* is equal to the area between the arc *PTQ* of the parabola and the *x*-axis.

